Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Curr Med Chem ; 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2319331

ABSTRACT

BACKGROUND: COVID-19 disrupted NTD programs in 60% of countries, impairing public health goals. Thus, boosting NTD's research knowledge is pressing, and in vivo screening of candidates allows for the prospect of auspicious options based on their overall profile. OBJECTIVE: In this work, we highlighted the relevant research done between 2015-2021 in the fields of synthetic and repurposed drugs that were tested in vivo for Chagas disease, malaria, and schistosomiasis. METHODS: MEDLINE, PUBMED, CAPES PERIODIC, and ELSEVIER databases were used for a comprehensive literature review of the last 5 years of research on each area/disease. RESULTS: Overall, research focused on nitro heterocyclic, aromatic nitro, nucleoside, and metal-based scaffolds for analogue-based drug generation. Repurposing was widely assessed, mainly with heterocyclic drugs, their analogues, and in combinations with current treatments. Several drug targets were aimed for Chagas treatment, specific ones such as iron superoxide dismutase, and more general ones, such as mitochondrial dysfunction. For malaria, hemozoin is still popular, and for schistosomiasis, more general structural damage and/or reproduction impairment were aimed at in vitro analysis of the mechanism of action. CONCLUSION: Latest in vivo results outlined trends for each disease - for Chagas Disease, heterocyclics as thiazoles were successfully explored; for Malaria, quinoline derivatives are still relevant, and for schistosomiasis, repurposed drugs from different classes outstood in comparison to synthetic compounds. This study uprises the continuous development of Chagas disease, malaria, and schistosomiasis drugs, providing researchers with tools and information to address such unmet therapeutic needs.

2.
Comput Biol Med ; 151(Pt A): 106284, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095221

ABSTRACT

The worldwide pandemic of coronavirus disease 2019 (COVID-19) along with the various newly discovered major SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.1.28, constitute the Variant of Concerns (VOC). It's difficult to keep these variants from spreading over the planet. As a result of these VOCs, the fifth wave has already begun in several countries. The rapid spread of VOCs is posing a serious threat to human civilization. There is currently no specific medicine available for the treatment of COVID-19. Here, we present the findings of methods that used a combination of structure-assisted drug design, virtual screening, and high-throughput screening to swiftly generate lead compounds against Mpro protein of SARs-CoV-2. Therapeutics, in addition to vaccinations, are an essential element of the healthcare response to COVID-19's persistent threat. In the current study, we designed the efficient compounds that may combat all emerging variants of SARs-CoV-2 by targeting the common Mpro protein. The present study was aimed to discover new compounds that may be proposed as new therapeutic agents to treat COVID-19 infection without any adverse effects. For this purpose, a computational-based virtual screening of 352 in-house synthesized compounds library was performed through molecular docking and Molecular Dynamics (MD) simulation approach. As a result, four novel potent compounds were successfully shortlisted by implementing certain pharmacological, physiological, and ADMET criteria i.e., compounds 3, 4, 21, and 22. Furthermore, MD simulations were performed to evaluate the stability and dynamic behavior of these compounds with Mpro complex for about 30 ns. Eventually, compound 22 was found to be highly potent against Mpro protein and was further evaluated by applying 100 ns simulations. Our findings showed that these shortlisted compounds may have potency to treat the COVID-19 infection for which further experimental validation is proposed as part of a follow-up investigation.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Pandemics , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology
3.
PeerJ ; 9: e11171, 2021.
Article in English | MEDLINE | ID: covidwho-1200335

ABSTRACT

BACKGROUND & OBJECTIVES: The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. METHODS: In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. RESULTS: Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (-5.20 kcal/mol), thymoquinone (-4.71 kcal/mol), and andrographolide (Kalmegh) (-4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. INTERPRETATION & CONCLUSIONS: The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.

SELECTION OF CITATIONS
SEARCH DETAIL